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Mapping the dynamics of a bursting neuron
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SUMMARY

The anterior burster (AB) neuron of the lobster stomatogastric ganglion displays varied rhythmic
behavior when treated with neuromodulators and channel-blocking toxins. We introduce a channel-
based model for this neuron and show how bifurcation analysis can be used to investigate the response of
this model to changes of its parameters. Two dimensional maps of the parameter space of the model were
constructed using computational tools based on the theory of nonlinear dynamical systems. Changes in
the intrinsic firing and oscillatory properties of the model AB neuron were correlated with the
boundaries of Hopf and saddle-node bifurcations on these maps. Complex rhythmic patterns were
observed, with a bounded region of the parameter plane producing bursting behavior of the model
neuron. Experiments were performed by treating an isolated AB cell with 4-aminopyridine which
selectively reduces ga, the conductance of the transient potassium channel. The model accurately
predicts the qualitative changes in the neuronal voltage oscillations that are observed over a range of
reduction of ga in the neuron. These results demonstrate the efficacy of dynamical systems theory as a
means of determining the varied oscillatory behaviors inherent in a channel-based neural model.
Further, the maps of bifurcations provide a useful tool for determining how these behaviors depend upon
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model parameters and comparing the model to a real neuron.

1. INTRODUCTION

The anterior burster (AB) neuron of the stomatogas-
tric ganglion (STG) of the spiny lobster Panulirus
interruptus is a conditional bursting neuron whose
properties have been studied intensively (Harris-
Warrick & Flamm 1987; Harris-Warrick & Johnson
1987). When isolated from other neurons, the AB cell
is quiescent with a stable resting potential. Harris-
Warrick and Johnson (1987) demonstrated that phar-
macological blockade of several different potassium
currents in this neuron can lead to rhythmic electrical
activity. There are several characteristic patterns of
rhythmic activity, including bursting oscillations, peri-
odic action potentials of constant amplitude and slow
oscillations without action potentials. This paper
examines dynamical models for the AB cell. We
introduce a new modeling strategy that is based upon
multiparameter bifurcation theory, one of the de-
velopments of renewed interest in the behavior of
nonlinear dynamical systems during the past two
decades. Our primary purpose here is to demonstrate
how these methods can produce detailed maps that
partition a parameter space of a model into regions
with different types of dynamical behavior. Compari-
sons of the behavior of the model neuron are made
with a limited set of experimental data on a real
neuron to illustrate how these maps allow us to select
parameter values for which there is a good match
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between the rhythmic patterns in model and experi-
mental data.

The models we use are based on a system of
differential equations describing the activity of a set of
ion channels present in the AB cell membrane. Our
models are extensions of one introduced by Plant
(1981), refined by Rinzel and Lee (1987), and used by
Epstein and Marder (1990) as a representation of the
electrical activity of the AB cell. Our work builds
upon theirs in two ways: (i) we add a representation of
the transient potassium A channel to their models;
and (ii) we perform an extensive analysis of bifurca-
tions in the model’s parameter space, to show how the
dynamics of the models depend upon variations of
model parameters. The predictions of our model are
compared more directly with experimental observa-
tions than the results of previous analyses.

Voltage clamp experiments were performed to
measure the characteristics of the potassium and leak
channels of the neuron (Golowasch 1991; Tierney et
al. 1992). However, for technical reasons described
below, attempts to voltage clamp inward currents in
the AB cell in situ have not yet been successful.
Instead, we used simulations and analysis of the model
to find parameter values that reproduce the observed
responses of the cell to different environments. We
assume that a fundamental aspect of the real cell’s
function is its sensitivity to small stimuli. Therefore,
we initially pick parameter values that lie in regions
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where qualitative features of the model dynamics are
sensitive to small changes in parameter values. This is
accomplished by computing the location of degenerate
bifurcations in the model. We are encouraged that the
model does reproduce many of the changes in bursting
behavior during pharmacological reduction in the
conductances of potassium channels observed by Har-
ris-Warrick and Johnson (1987) and in additional
experiments that were conducted as a benchmark for
comparison with these models.

Without this systematic strategy for locating rele-
vant regions of the parameter space of our model
corresponding to various behaviors, it would have
been difficult to achieve such a successful comparison.
Previous modeling studies have produced good fits to
recorded experimental measurements under fixed ex-
perimental measurements, but they have seldom
explored whether the effect of modulatory changes
within an experiment can be faithfully reproduced
within the model. Neural systems undergo large
changes in their rhythmic properties with small
changes in their inputs, and this correlates with
radical alterations in behavior (Harris-Warrick &
Marder 1991). Thus, the ability of models to produce
similar appropriate changes with subtle changes in
parameters is a fundamental aspect of their represen-
tation of neural behavior. Our work demonstrates the
suitability of computational approaches to these ques-
tions based upon the bifurcation theory of dynamical
systems.

2. CHANNELS AND NEURAL MODELS BASED
ON CHANNELS

Changes in the electrical potential of a neuron are
primarily due to ionic currents (/;) that flow through
channels located within the membrane. If the cell is
isopotential, the membrane potential v satisfies the
equation:

Cmﬁz _Z[j'+]ext) (l)
J

where C,, denotes the membrane capacitance, and
experimentally imposed external currents are denoted
by I... The different currents are each represented by
an equation of the general form

I = gialbf (v — v), (2)

where g; is the maximal conductance, @ is related to
the probability that the channel is activated, & is
related to the probability that the channel is inacti-
vated and v, is the reversal potential for the specific ion
channel (Hille 1992).

The activation and inactivation processes respond
to voltage changes by shifting towards a new steady
state value. This steady state is voltage dependent and
sometimes also depends on an ion concentration (e.g.
calcium). We describe the time dependent equilib-
ration by a typical differential equation of the form

a=(aep, —a)K,, (3)

where K, is the rate constant for the process and a,, is
its (voltage dependent) steady state value. The acti-
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vation steady state is represented by a sigmoid
function

1

= . 4
1 +e=" @

g (0)

Here v, is the voltage where a,, attains the value 3.
The parameter s, is the ‘width’ of the sigmoid curve
(negative for activation and positive for inactivation
processes). For two of the channels, we take the time
constant K, to be infinite, and replace the differential
equation (3) by the equation a = a,,. The inactivation
process is described by equations analogous to 3 and 4.
In some cases the inactivation process (&) is described
instead as a weighted average of two sigmoids (a;,0,)
with a constant rate (A)

b=M(a,(1 — b) — bb). (5)

Activation and inactivation often occur on different
time scales. One can approximate processes that are
faster than the time scales of interest as instantaneous
and represent the corresponding variable only by its
steady state value. This reduces the number of
differential equations in the model.

We now enumerate the six specific currents that are
incorporated into our model cell.

1. The basic properties of voltage-activated sodium
channels were characterized in the work of Hodgkin
and Huxley (Hodgkin & Huxley 1952). As in most
subsequent models for electrical activity in nerve
membranes, we use the Hodgkin-Huxley represen-
tation of sodium channels. The conductance is given
by the expression gn.m®h, where gn, represents the
maximum conductance. The inactivation variable 4 is
defined by the differential equation (9) (together with
equations (15) and (16)) while the (faster) activation
process m is assumed to be instantaneous and is
defined by equations (12), (13) and (14). This
common assumption simplifies the numerical analysis
by reducing the stiffness of the resulting differential
equations model and the dimension of its phase space.
The sodium equilibrium potential is denoted vn,. In
figure la we have plotted the equilibrium values of m,
h and m®h as a function of v.

2. We have adopted the representation of calcium
currents for the Aplysia R15 neuron used by Rinzel &
Lee (1987). Equations (6), (7), (10) and (21) define
Ic,, with equilibrium  potential ve, and maximal
conductance gc,. The conductance of this channel is
both calcium and voltage dependent. The activation
variable, z, is a slow voltage dependent process shifting
towards its steady state value (z,) with constant rate 7,
(equation (10)). The inactivation process is assumed to
respond instantaneously to calcium concentration and
it is represented by 1/(0.5+¢) (where ¢ denotes the
dimensionless activity of free calcium in the cell).
Equation (7) describes the slow dynamics of the
calcium concentration, governed by the rate constant
p. In figure 15 we plot the voltage dependence of the
steady state value of Ca from its kinetic equation (7)
and the coefficient z/(0.5 + ¢) that modifies the conduc-
tance of the calcium current.

3. The voltage-dependent potassium current Ix
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Figure 1. (a) The steady state characteristics of the sodium Na channels are plotted. The increasing curve is the
steady state value of the activation variable m. The decreasing curve is the steady value of the inactivation variable /4.
The curve with the maximum near v= — 20 is the product 10 m*h that modifies the conductance of the current ix,.
(b) The steady state characteristics of the calcium current and the potassium activated current are plotted. The curve
with a maximum value approximately 0.6 is the steady state value of intracellular free Ca’* obtained from solving
the equation ¢=0 with kc,=0.0078. The upper curve gives the steady state values of the factor z/(0.5+¢) that
multiplies ge. (v — ve,) in the expression for the current /¢,. The lower curve gives the steady state values of the factor
¢/(0.5+¢) that multiplies gkea(v —vkca) to give Jkc.. (¢) The steady state values of activation variable n of the
potassium K channel are shown. (d) The steady state characteristics of the potassium A channels are plotted. The
increasing curve is the steady state value of the activation variable ma. The decreasing curve is the steady value of
the inactivation variable £x. The curve with the maximum near v= —60 mV is the product 100 ms*z that modifies
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the conductance of the current ix.

(equation (6)) used here follows its representation by
Hodgkin—Huxley. There is no significant inactivation
process for this channel. The activation variable is
denoted 7 (defined by the differential equation (8)
together with equations (17) and (18)) and the
conductance of the channel is given by the expression
gxn'. The potassium equilibrium potential is denoted
vk. Figure lc¢ shows the voltage dependence of the
potassium steady-state-value activation.

4. The second type of potassium current incorpor-
ated in our model is a channel whose activation is
influenced by the concentration of intracellular free
calcium. Gorman and Thomas (1978) demonstrated
that changes in the permeability of the cell membrane
to K* ions due to changes in intracellular free calcium
concentration play an important role in bursting of
the Aplysia R15 neuron. We have used the represen-
tation of the calcium-activated potassium channel
(equations (6), (7), (10) and (21)) as described in the
paper of Rinzel and Lee (1987). The change in the
conductance of the channel due to calcium is given by
the factor ¢/(0.5+¢). The steady state values of this
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factor are plotted in figure 15. The associated maximal
conductance is denoted ggc,. In this formulation, note
that the voltage dependence of Ixc, arises solely from
the voltage dependence of the calcium current /g,.
There are some preparations where Ixc, has an
additional intrinsic voltage dependence of activation
(see Barrett et al. 1982; Hille 1992), but this is not
incorporated into our model.

5. A third potassium current is carried by the A
channel, which allows a transient outward current to
flow following a period of hyperpolarization (Connor
& Stevens 1971). Since the incorporation of I into
our model is a new addition to the Rinzel and Lee
model of a bursting neuron (Rinzel & Lee 1987), we
describe it in more detail than the other currents. We
have taken data on /4 collected by Golowasch (1991)
on the A current in the LP cell of the stomatogastric
ganglion of the rock crab Cancer borealis, and by
Tierney and Harris-Warrick (1992) in the AB cell of
the stomatogastric ganglion of the spiny lobster Panu-
lirus interruptus, as the basis for our representation of
this current. The A current can be blocked selectively
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Figure 2. The steady state current voltage relationship of the
A current i, as measured by Tierney and Harris-Warrick
(1992) versus peak measurements from our model. The
conductance of the A current has been chosen as 125 pS.

in Panulirus stomatogastric neurons by application of
4-aminopyridine (4-AP) (Tierney & Harris-Warrick
1992). Consequently, I, can be isolated by subtracting
the total current measured with and without 4-AP. I,
can also be isolated by a digital subtraction of the
evoked leak-subtracted currents from a holding poten-
tial where the channels are completely inactivated
(typically —50 to —40 mV) from an equivalent set of
leak-subtracted currents taken from a holding poten-
tial where there is no resting inactivation of [y
(typically —90 to — 100 mV) (Golowasch 1991; Tier-
ney & Harris-Warrick 1992). We postulate that the
kinetic description of the A channel is similar to that
of the sodium channel (i.e. three a type and one b type
gating particles). The voltage dependent variables ma
and /4, characterize activation and inactivation, re-
spectively. The inactivation process is governed by the
differential equation (11), with the steady state value
ha; and the rate constant k5. Because experiments
reveal that activation occurs on a much faster time
scale than inactivation, it is considered instantaneous
in the model. Equations (19) and (20) describe ms and
the steady state value £,; as sigmoid exponential
functions with half maximal values », and v, and
widths s, and s; respectively. They are derived by a fit
to the experimental data of Golowasch (1991) and of
Tierney and Harris-Warrick (1992), and differ from
the model used by Golowasch (1991) and by Buch-
holtz et al. (1992). Figure 2 shows our calculation of
the conductance of the A channel from these data. In
contrast to its apparent weak role in the dynamics of
the LP cell (Golowasch 1991), the A current plays a
crucial role in the bursting patterns of the AB cell
(Harris-Warrick & Johnson 1987). This conclusion is
based on experiments on the isolated AB cell in which
the A channels were increasingly blocked by increas-
ing concentrations of 4-AP (Tierney & Harris-War-
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rick 1992; figures 7 and 9). Increasing blockade of I
shifts the isolated AB cell from a silent quiescent state
(figures 7a and 9a) to an oscillating state (figures 7¢, d
and 96—d) to tonic firing (figure 7¢) or silence (figure
9¢), while it only yields a relatively small depolariza-
tion of the LP cell (Golowasch 1991; Buchholtz e al.
1992). The pronounced effect of the A current is
obtained in our model by assigning a relatively large
‘maximal conductance’ to the A current term. The
constant ga represents the conductance corresponding
to a fully activated channel with no inactivation.
Figure 2 shows the peak current-voltage relationship
for I, as measured experimentally (Tierney & Harris-
Warrick 1992) versus the numerical computations
from our model. In figure 1d we display the voltage
dependence of the activation process, the inactivation
process, and the expression 100 maha, (normalized A
conductance, for a typical value gy =100 pS).

6. The final current included in our model repre-
sents the leak current (/) of the membrane. These are
background currents, mainly due to chloride, whose
conductance is assumed to be voltage independent.
The parameters affecting this current are its conduc-
tance (g) and equilibrium potential ().

Our model is thus defined by the following set of
equations where the differential equations (equations
(6-11)) appear first, grouped together, followed by
equations (12-20) which describe the instantaneous
processes and the steady state values. Finally, equa-
tion (21) is related to the calcium kinetics.

z
Cod = — <gNam3/z<v — o)+ geagm (0 ve) +
INa ICa
¢
gxnt(v —vg) + gKCam(U — ) +
IK IKCa
gamiha(v — k) + @(v — Ul)) + L (6)
Iy 1
(kCaZ<vCa - T))
s — L 7
‘ p( 1+2) ¢ @
n=A(a,(1 —n) — bn) (8)
b= M(a(1 = k) = bh) 9)
z= (Z,,—*Z)/TZ (10)
ha = (hai = ha)ka (11)
127 v+ 201
Ay = = 2017 127 (12)
10 — 10e ™70 ~ 1050
by = 4e % 10 Y (13)
fm 14
m =
P (14)
LT 15
= —— ¢ "3 2100 Y
"= 100 (15)
1
blz = 83 _ 127 (16)
1 + e 10507


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Mapping the dynamics of a bursting neuron

- A 17
"7 100 — 100e B (17)
bnzée_%'ﬁlﬁ?lou (18)

1
Ma = 19
“ l + e= (19)
h : 20
Ai_l—l—eK;T% (20)
1
“ (21)

Tl e M-

To complete the description of the model table 1
gives the values we used for the parameters that
appear in equations (6-21). We quote here only those
parameters which were held fixed throughout the
analysis. The ranges of the parameters ga and gkc. are
discussed in §4. The units of all conductances are

uS.

3. MODEL ANALYSIS

Realistic models for the responses of neurons con-
structed from currents conducted by several ion
channels yield multidimensional systems of ordinary
differential equations containing complicated analytic
expressions and many different parameters. The sys-
tem given above is a typical example. It is difficult to
predict the activity of such a model neuron from
inspection of the differential equations defining it.
Computer simulations of the model predictions are
required. There is no other way than numerical
integration to amalgamate the information about
different currents, although it is possible after the fact
to give a qualitative description of the dynamics in
terms of their activation and inactivation processes.

Table 1. Values of parameters that appear in equations

(6-21)

parameter value units
p 0.003 ms~!
A 0.8 ms~!
A 0.8 ms~!
ka 1 ms~!
T, 23.5 ms
k(}a 0.0078 mV -1
Zy —50 mV
Va —12 mV
vy —62 mV
Sa —26 mV
Sp 6 mV
UNa 30 mV
VCa 140 mV
VK —75 mV
v —40 mV
a 0.0854 usS
oK 8.0 uS
gca 0.04 usS
&Na 15 HS
Cn 1 nF
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Dynamical systems theory (Guckenheimer & Holmes
1983) can be used to guide these simulations in a
systematic manner.

Numerical integration of individual trajectories
presents no unusual computational problems, but the
characterization of how the dynamical behavior of a
model depends upon its many parameters is a formid-
able task. In this paper, we introduce the analysis of
neural models with methods that rely upon bifurca-
tion theory. By studying properties of dynamical
systems that depend upon parameters, patterns of
bifurcation are identified that show how qualitative
changes in the phase portraits of the vector fields
occur as parameters are varied. Some types of bifurca-
tions can be identified in neuronal models using tools
from computer algebra systems. The calculation of
degenerate bifurcations with the computer program
Maple (Char et al. 1991) allows us to readily locate
regions of parameter space in which the models have
complex dynamical behavior similar to that seen in
biological experiments with the AB neuron. The
information about equilibria derived from these calcu-
lations is inserted into an interactive environment for
visualizing trajectories computed by numerical inte-
gration (Back et al. 1992). The analysis of the
unfoldings of degenerate bifurcations can also be used
to locate parameter regions with a rich repertoire of
dynamical behavior.

The explicit calculation of bifurcations of equilib-
rium points has been an important part of our
investigations. Therefore, we describe how these
mathematical calculations were performed. (For those
with little interest in mathematical detail, the
remainder of the paper is independent of this descrip-
tion.) If x=/i(x) is a vector field depending upon
parameters, then the equations describing bifurcations
of an equilibrium of the vector field are given by
JSilx)=0 together with conditions on the Jacobian
derivative Df of f. For saddle-node bifurcations, the
condition is that Df have a zero eigenvalue, or
equivalently that the determinant of Df be zero. For
Hopf bifurcations, the condition is that Df have a pair
of pure imaginary eigenvalues. The eigenvalues are
roots of the characteristic polynomial of Df. Since the
characteristic polynomial is real, the sum of a pair of
pure imaginary eigenvalues is zero. The condition
that the characteristic polynomial have a pair of roots
with zero sum can be described by a (complicated)
polynomial in the coefficients of the characteristic
polynomial  of Df (Guckenheimer et al. 1993).
Whether the pair of roots are real or pure imaginary
can be determined by an inequality involving the
coefficients of the characteristic polynomial. In
general, one does not expect explicit analytic ex-
pressions for the solutions to the multidimensional
systems of equations yielding equilibrium points. In
the case of neuron models, however, the complexity of
the analytic expressions is largely in the dependence of
f on the membrane potential » and in the nonlinear
dependence of 9 on the remaining variables in the
system. When an equilibrium is known to occur with
potential vy, it is easy to solve for the equilibrium
values of the remaining variables. We exploit this fact
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in our computations. Furthermore, ¢ has a simple
dependence on many of the system parameters such as
maximal conductances for the different channels and
the equilibrium potentials of different ions. Thus we
can solve for the parameter values that lead to
equilibria at specific values of v by treating v as an
independent variable. We solve for the equilibrium
values of the remaining variables and parameters that
lead to solutions of the equation 9 =0 and the desired
bifurcation equation(s). By carrying through these
calculations for different values of v and leaving two
parameters undetermined at the start of the calcula-
tion, we determine curves in a two dimensional
parameter space at which Hopf and saddle-node
bifurcations (Guckenheimer & Holmes 1983) occur.

The data obtained from the symbolic computation
programs was edited into a format used by the
program DsTool (Back et al. 1992) for labeling para-
meter values. This program provides an efficient
environment for the interactive exploration of dyna-
mical systems. Of particular interest for this study,
DsTool provides a graphical window in which points
from a two dimensional slice of the parameter space of
the system can be marked with symbols and the
asymptotic dynamical behavior of the corresponding
trajectories observed visually. We have used this
facility to label the bifurcation points of parameter
space that were computed using Maple. The resulting
diagram forms a ‘template’ that divides the parameter
space into regions with different dynamical behavior.
The numerical integration routines of DsTool were
then used to compute and display the corresponding
trajectories. Visual inspection of the asymptotic beha-
vior of the trajectories led to further divisions of the
parameter space into regions with (apparently) differ-
ent dynamical behavior.

4. RESULTS

Our goal in these computational studies has been to
clucidate how the dynamics of the AB neuron model
depend upon variations of its parameters. We were
particularly interested in identifying and studying
regions in the parameter space where small changes in
the parameters produce qualitative changes in the
behavior of the model, as was seen with a real AB
neuron during application of channel-blocking agents
and neuromodulators. To achieve this goal, we have
constructed maps of the parameter space showing
bifurcations between regions with qualitatively differ-
ent electrical behavior. These maps could then serve
as templates for the analysis of changes in the intrinsic
activity of conditionally bursting neurons upon expo-
sure to drugs and neuromodulators. Our computa-
tional environment allows us to easily manipulate two
parameters at once. Following preliminary studies
designed to identify the parameters upon which the
model i3 most sensitive, we concentrated on studying
simultaneous variations of the parameters gk ca, ga that
represent the maximal conductances of the calcium-
activated potassium current and the transient potassium
A current. Decreases of these parameters correspond
to experiments in which we applied selective potas-
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sium channel blockers to an isolated AB cell (Harris-
Warrick & Johnson 1987; Tierney & Harris-Warrick
1992).

We start by describing the procedure we used to
obtain estimates for the values of the parameters used
in the model. Our experimental data were collected
by recording currents and voltages intracellularly
from the soma of the AB cell. When the voltage clamp
procedure is used to study currents in the AB cell, only
outward and leak currents are detected (Golowasch
1991; Tierney & Harris-Warrick 1992). This occurs
because the AB cell has a very extended neuropil
which is not adequately voltage clamped with our
procedures. The ion channels for inward currents
carried by sodium and calcium ions appear not to be
present on the cell body. We assume that they are
selectively localized in the neuropil, beyond the region
of adequate space clamp. Thus, we cannot obtain
direct data for the inward currents in the model.
Assuming the values of the equilibrium potentials and
the description of the kinetic processes, choices must
be made for the maximal conductances g, gk, £Kca, £a,
gca and gn,. We have adapted the models of Rinzel
and Lee (1987) for the calcium channel and calcium-
activated potassium channel. The kinetic parameters
of I¢a, ¢ and Ixc, have been adjusted to account for the
typical 1s period of the AB cell slow oscillations as
contrasted with the 10 s period of the slow oscillations
in the Aplysia R15 cell studied by Rinzel and Lee. Ad
hoc values were chosen for the leak current. This
leaves us with unknown values for the three para-
meters gk, gkca, A, representing the maximal conduc-
tances of the three potassium channels. Variations of
these three parameters correspond to the experimental
results of Harris-Warrick and Johnson (1987) who
added selective antagonists of these channels to induce
rhythmic bursting in an isolated AB neuron. The
conductances depend on the conductivity of an indi-
vidual channel and on the number of channels that
are found on the cell’s membrane. Since our experi-
mental measurements have limited accuracy due to
the space clamp problems discussed above, and since a
natural biological variation in the activity of the AB
neuron is found in different preparations, we did not
try to find exact values for the conductances. Instead,
we estimated the range of values they may take while
remaining in a plausible region that can represent the
the cell’s behavior. These estimates were obtained by
analysis of experimental data and exploration of the
model dynamics.

Figure 3 shows a bifurcation analysis of two dimen-
sional slices of the parameter space in which the axes
are one of the pairs (grca,ga), (€k,8A) O (€K,9KCa)-
Points of Hopf and saddle-node bifurcations are
drawn on these figures at locations that have been
computed by solving systems of seven equations in
seven unknowns with the computer algebra system
Maple. These equations are obtained by setting the
right hand sides of Equations (6-11) to 0 and adding
one additional equation for detecting the presence of a
bifurcation as described in the previous section. The
saddle-node bifurcations are marked by crosses and
the Hopf bifurcations are marked by points. The
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Figure 3. Two dimensional slices in the parameter space showing data on saddle-node and Hopf bifurcations. The
crosses denote saddle-node bifurcations and the dots denote Hopf bifurcations. The data shown were computed
using the program Maple. (a) Bifurcations in the (gkca,ga) plane. Patterns of activity of the model in different
regions of parameter space are noted. (5) Bifurcations in the (gk,ga) plane with ggc,=0.25. (¢) Bifurcations in the
(gx,gxca) plane with ga=100. Note that there is much less dependence of the bifurcations on the delayed rectifier

conductance gg than on the conductances (gkca and ga).

curves of Hopf and saddle-node bifurcations form
boundaries between regions of the parameter space
with qualitatively different dynamical behavior.

As the conductances of the potassium channels are
varied, the behavior of the model cell is observed to
vary. One can form a rough classification into four
different types of observed states: quiescent, periodic
with a fast period corresponding to tonic action
potentials, periodic with a slow period and no action
potentials, and bursting behavior which has both slow
periodicity and bursts of action potentials during the
depolarized phase of the slow oscillations. This classifi-
cation can be refined: during bursting behavior, the
number of action potentials per cycle varies consider-
ably. Additionally, there are complex bursting states
with different numbers of action potentials in each

Phil. Trans. R. Soc. Lond. B (1993)

cycle that are presumably chaotic. Quantitative
aspects of the behavior such as the membrane poten-
tial of the quiescent state, the period of the oscillation
and the fraction of the period that is part of a bursting
cycle are important biological parameters that affect
the simple rhythmic behavior driven by the pyloric
network.

Using the information from the bifurcation analysis
as a template, we investigated the dynamics of
trajectories with parameters chosen in different
regions of the (gkca,ga) parameter plane. Some of
these trajectories are displayed in figures 4 and 5. The
different parameter values used to calculate trajec-
tories figures 4a—f and 5a—f are displayed by lettered
labels on figure 3a. Figure 4 shows graphs of voltage
versus time (calcium versus time for one case) that can
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Figure 4. The graphs of voltage versus time for five different parameter values of the model and the graph of calcium
concentration versus time for one parameter value. Each trajectory has been run for long enough to give apparent
transients time to decay, except for (d) where the asymptotic approach to a stable equilibrium state is shown. The
values of the parameters other than g and gkc. are given in table 1. (a) ga=77.95 and gkc.=0.321606 produces a
typical periodic bursting cycle with a period approximately 1s. (b) ga=63.21 and gkc.=0.245336 produces
periodic, tonic action potentials with a period approximately 40 ms. (¢) ga=164.43 and gkc.=0.16835 produces a
chaotic pattern of action potentials. Calcium concentration versus time is plotted since the voltage appears almost
periodic. (d) ga=179.7 and gxc.=0.149839 leads to a quiescent, stable equilibrium. A transient approaching the
stable equilibrium is shown. (¢) ga=71.73 and gkca=0.2757 appears close to a homoclinic cycle, a trajectory that
starts near an unstable equilibrium and returns close to the equilibrium. The subsequent bursting cycle is chaotic.
(f) ga=82.07 and gxc.=0.273537 shows a chaotic trajectory with a variable number of action potentials per
bursting cycle.
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Figure 5. Plots of voltage vs calcium for the same model trajectories shown in figure 3. In (d), the triangle denotes
the stable equilibrium point, and the crosses locate the projection of two unstable equilibrium points onto the (Ca,v)

plane.

be compared directly to experimental voltage record-
ings from the AB cell. Since the concentration of
intracellular free calcium changes more slowly than
the other variables, it is an important determinant of
the properties of the slow oscillations. Therefore, we
present in figure 5, plots of voltage versus calcium
concentration for the same trajectories shown in
figure 4.

We describe the major features revealed by this
analysis of the (gkca,ga) parameter plane. There is a
region of parameters in which the cell displays

Phil. Trans. R. Soc. Lond. B (1993)

bursting behavior or slow oscillations without action
potentials. The boundary of this region is approxi-
mated by (but not coincident with) the large loop of
Hopf bifurcations. Figures 4a and 5a show a periodic
bursting trajectory with four action potentials per
burst. The region of tonic action potentials in the
parameter plane lies to the left of the ‘tail’ in the Hopf
bifurcation curve that extends down from the loop of
bifurcations, intersecting the gk, axis near gxc,=0.3.
Figures 46 and 5b show a periodic trajectory with
tonic action potentials. In some regions, the mechan-
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Figure 6. Map of parameter space showing the region of figure 3a with underlying slow oscillations divided into
subregions with different numbers of action potentials per burst. The numbers label the number of action potentials
per burst in each region. The triangles label points at which irregular bursting behavior was observed, either more
complex periodicity or chaotic behavior. The large crosses label parameter values used in the comparison between
model data and experimental records shown in figures 7 and 9.

isms by which the tonic action potentials disappear
are complex. Figures 4¢ and 5¢ show a trajectory near
this boundary in which the voltage trace is approxi-
mately periodic, but the concentration of intracellular
free calcium appears to be chaotic. The region to the
right of the tail in the Hopf bifurcation curve and
outside the loop of Hopf bifurcations has a stable
quiescent state. Figures 4d and 5d show a trajectory
that goes through one burst before settling at a
quiescent state. Note that the parameter values asso-
ciated with figure 5d are chosen inside the cusp curve
of saddle-nodes in the bifurcation diagram. Here there
are three equilibrium states, but only one is stable.
By more extensive sampling of parameter values
and initial conditions for numerical integrations of
trajectories, we produced a more refined division of
the parameter space into regions with different types
of attracting states supporting oscillations. Figure 6
shows the division of the region with slow oscillations
and bursting behavior into regions with different
numbers of action potentials per burst. These regions
have been mapped by inspecting trajectories with
randomly chosen initial conditions at a large number
of different parameter values within the region. There
is a general trend for the number of action potentials
per burst to increase with decreasing conductance of

Phil. Trans. R. Soc. Lond. B (1993)

the calcium activated potassium concentration,
although the shape of the regions is hardly regular.
The final step in our study was to make explicit
comparisons between a real AB neuron with the
behavior of our model during sequential changes in a
single parameter. Our computational results give clear
predictions about the response of the AB cell to
variations in its potassium conductances. These pre-
dictions are qualitatively consistent with the experi-
mental findings of Harris-Warrick and Johnson
(1987) and Tierney and Harris-Warrick (1992). Their
experiments involved addition of selective potassium
channel antagonists to a quiescent AB cell. A number
of antagonists induced rhythmic bursting, including 4-
aminopyridine (a selective blocker of 1), tetraethyl-
ammonium ion (which blocks /x and Ixc.), apamin
(which partially blocks Ixc,) and a number of condi-
tions which selectively reduce Ca%* entry into the cell
(thus blocking Ikc,). Although these experiments were
qualitative, they suggested that [, Ik and Ikc, are at
least partially active at the normal resting potential,
and all that is needed to induce rhythmic bursting is
to reduce their currents by reducing the correspond-
ing ga, gk Or grca. In figure 6, for example, the
quiescent AB cell can be induced to burst by reduc-
tions of g, moving the cell vertically down into the
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Figure 7. Side by side comparisons between typical experi-
mental time traces of voltage versus time with time traces
from the model. The experimental data on the left are taken
from a single cell superfused with increasing concentrations
of 4-AP. The model data on the right are steady state
activity patterns (except for a voltage pulse in (b)) taken
from a set of parameter values with varying ga. The value of
gkca 15 0.28 and the values of the other parameters are taken
from table 1. (¢) 0 mm 4-AP, go=152; (4) 0.5 mm 4-AP,
aa=136.8; (¢) 1.0mm 4-AP, ga=114; (d) 2.0 mm 4-AP,
ga=76; (¢) 10.0 mm 4-AP, go=0. Left panel markers: 1s,
15 mV. Right panels show 5 s of traces from the model cell.

region enclosed by Hopf bifurcations. We emphasize
that the different channel blockers evoked bursting
with very different characteristics (Harris-Warrick &
Johnson 1987). This is expected from our model, since
each antagonist moves the cell in a different direction
of the parameter space, thereby locating the cell in
parameter regions with distinct behaviors.

Figures 7 and 8 show a comparison of the responses
of an AB neuron and our model to a series of
reductions of ga. The left panels show five traces of
voltage versus time recorded from a single isolated AB
neuron; these traces were obtained with increasing
concentrations of 4-AP (0, 0.5, 1, 2, and 10 mm). The
right traces show similar behavior in the model
neuron. With reference to figure 6, we choose initial
values of ggca=0.28 and ga = 152 for the quiescent cell
model. Starting with these values, we then decreased
the value of ga to 90, 75, 50 and O percent of normal,
respectively. These percentages correspond to our
estimates of the reduction in the maximum con-
ductance of the A current for the corresponding
concentrations of 4-AP in the left panels (Tierney &
Harris-Warrick 1992). The asymptotic state of the
model is shown in the right panels. We have indicated
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the corresponding values of (gkca,ga) as the left hand
series of crosses in the map of parameter space for the
model neuron shown in figure 6.

In the absence of 4-AP, both the experimental
neuron and the model cell are initially in a quiescent
state (figure 7a). When a tonic depolarizing current,
Iy, of 0.5nA is applied, both the neuron and the
model respond by firing a few action potentials before
finding a new quiescent equilibrium at a depolarized
membrane potential (figure 8a). With 0.5 mm 4-AP
(909, of initial g5), the AB neuron shows an unstable
quiescent equilibrium that is slightly depolarized from
the previous resting potential, and fires an occasional
single burst of action potentials (figure 76). The model
also shows the slight depolarization but does not fire
bursts of action potentials. We consider it likely that
this discrepancy arises from ‘noise’ in the biological
system, allowing the AB neuron to occasionally depo-
larize above threshold to fire a burst. Consistent with
this interpretation, a brief depolarizing pulse was
given to the model and it responded with a single
burst of action potentials as shown in the right hand
trace. When I (0.5 nA) is applied to either the AB
neuron or the model, both respond with the induction
of rhythmic oscillation with bursts of action potentials
that lasts as long as the current injection (figure 8b).

During application of 1 mM (75% ga) and 2 mm
(50%, ga) 4-AP, the AB neuron is in the stable
bursting region (figure 7¢,d). As 4-AP is increased, the
neuron oscillates at a slightly lower frequency, and
fires more action potentials per burst (eight in 1 mm
4-AP (figure 7¢) versus 9 in 2 mm 4-AP). However,
note that the third burst of action potentials in figure
7d has eight action potentials rather than nine, so the
bursting is not regular. The model cell displays similar
behavior for ga=114 (figure 7¢) and go=76 (figure
7d). With gs = 114, the model cell is periodic, firing six
action potentials per burst. When ga is reduced to 72,
the parameter fall in the irregular (chaotic) region of
figure 6, and the model cell fires bursts of action
potentials in which the number of action potentials
per burst varies between six and ten.

For 10 mm 4-AP, go=0 (Tierney & Harris-Warrick
1992). Under these conditions, this AB neuron fired
tonic action potentials at high frequency (figure 7¢).
The model also fires tonically without the slow
oscillations seen in figures 7¢ and 7d. As seen in figure
6, the elimination of go places the parameters of the
model below the region of parameter space where
bursting occurs, and now shows tonic activity. The
model fires action potentials at a higher rate than the
AB neuron; this may reflect the more rapid kinetics of
the currents underlying the action potential in our
model than in the real cell.

Results similar to those shown in figures 7 and 8
were observed with four isolated AB neurons. How-
ever, a fifth cell showed somewhat different responses
to reduction in ga (left panels, figure 9). We hypothe-
size that this difference arose from the natural biologi-
cal variability in the properties of the AB cell in
different preparations (Harris-Warrick & Flamm
1987; Harris-Warrick & Johnson 1987; Tierney &
Harris-Warrick 1992). This difference can be
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Figure 8. Responses of the AB neuron and model to external current injection. The same neuron and parameter
values from figure 7a and 74. In each panel, external current injection of 0.5 nA is applied at the arrow and
maintained for the rest of the trace. (a) 0 4-AP; (4) 0.5 mm 4-AP.

modelled by choosing an initial value of gkc, that is
slightly different from those in the model cell shown in
figures 7 and 8. Based upon figure 6 and the cell’s
response to 4-AP, we selected a value of 0.309361. The
corresponding values of (gkca,ga) are shown as the
right-hand vertical series of crosses in the parameter
space for the model shown in figure 6. The five traces
in the left panels of figure 9 were obtained from an
experiment where the AB cell was bathed with 4-AP
concentrations of 0.5, 1, 2, 3 and 10 mm 4-AP (which,
respectively, correspond to 90, 75, 50, 35 and 0O
percent of the initial value of ga. The traces showing
the asymptotic state of the model at these values of ga
are shown in the right panels of figure 9.

The neuron was quiescent at both 0 (data not
shown) and 0.5 mm 4-AP (figure 9a); the only differ-
ence was a slight depolarization of the neuron with
0.5 mm 4-AP, which is duplicated with the model for
909, of the normal gu for this cell. At 1 mm 4-AP, the
AB neuron oscillated irregularly, and with a low
number of action potentials per burst (4-5 in figure
9b). When the g4 value was reduced to 75%, of its
initial value of 152, the model cell was periodic, firing
two action potentials per burst. ’

At 2 mm 4-AP (corresponding to 509, of initial ga),
this AB neuron fired rhythmically at a higher fre-
quency, with seven action potentials per burst (figure
9¢). The model produces a similar result: the cell is still
periodic, with a higher frequency and a larger number
of action potentials per burst (five). As go was further
reduced by increasing the concentration of 4-AP to
3 mm, the AB neuron entered a region of unstable
bursting, with bursts containing variable (but smaller)
numbers of action potentials (figure 94). The model
shows very similar behavior with gy =53, correspond-
ing to 359, of the initial go value. The model cell is
irregular, oscillating in a manner that reaches thres-
hold for firing action potentials on some cycles, but
not others. When the cell fires action potentials, it fires
one or two per burst. This reduction in the number of
action potentials per burst is consistent with the
smaller number of action potentials per burst of the
biological AB neuron in 3mM 4-AP (figure 94)

Phil. Trans. R. Soc. Lond. B (1993)

compared with 2 mm 4-AP (figure 9¢). Finally, elimi-
nation of gy with 10 mm 4-AP caused this neuron to
fall silent (figure 9¢). The model predicts the identical
result.

The general properties of the model in this para-
meter range match these experimental data well.
Based on an analysis of the parameter space in figure
6, our model predicts that the second neuron (figure
9) has a slightly larger value of gk, than the first
neuron (figure 7). Reduction of g with application of
4-AP is equivalent to vertical downward movement in
the parameter space of figure 6 (see crosses for the
values used to represent the model cells). Modest
reductions of gx from the chosen initial value 152
moves both cells into the region of rhythmic oscil-
lations, but with different numbers of action potentials
per burst (more in the first neuron (figure 7) than in
the second (figure 9). Further reduction of gs carries
the first neuron into the region of tonic activity
bounded by a curve of Hopf bifurcations on the right,
while the second neuron moves to the region corres-
ponding to quiescent equilibrium activity on the
opposite side of this Hopf bifurcation curve (figure 6).
Thus, our model predicts appropriate responses of
both neurons to increasing concentrations of 4-AP,
assuming that their initial parameters of gxc, were
slightly different. This is entirely consistent with the
subtle variations of electrical activity of the AB neuron
in different preparations (Harris-Warrick & Flamm
1987; Harris-Warrick & Johnson 1987; Tierney &
Harris-Warrick 1992). We emphasize the ability of
our model to mimic this natural variability by select-
ing appropriate values for the parameters; this is
greatly expedited by comparison of the experimental
data with thoroughly analyzed maps of parameter
space such as the one displayed in figure 6.

Despite the agreement between our model and
these experimental data, there remain important
differences. Perhaps the greatest discrepancy between
the two is the difference in the shape of the voltage
versus time recordings in figures 7 and 9. The
amplitude of the action potentials within the model is
much larger than the amplitude of the action poten-
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Figure 9. Side by side comparisons between experimental
time traces of voltage versus time from a different neuron
with time traces from the model. The experimental data on
the left are taken from a single cell superfused with
increasing concentrations of 4-AP. The model data on the
right are taken from a set of parameter values with varying
ga. The value of gkc, is 0.309361 and the values of the other
parameters are taken from table 1. (a) 0.5 mm 4-AP,
gr=136.8; (b) 1.0mm 4-AP, go=114; (¢) 2.0 mm 4-AP,
ar=176; (d) 3.0 mm 4-AP, go=53; (¢) 4.0 mm 4-AP, go=0.

tials recorded in the soma of the AB cell. As described
above, the soma of the AB cell is electrically inexci-
table and lacks the ion channels generating the inward
currents of action potentials. Thus the action poten-
tials, generated in the neuropil, propagate passively
along a long thin process to the soma. This process
acts as a low pass filter, greatly diminishing the spike
amplitude of the action potentials while not markedly
affecting the amplitude of the slow oscillations. The
low amplitude of the experimental spikes is an artifact
of the recording site. The second important difference
is that there are systematically more action potentials
per burst in the AB neurons than in the model cells
(for the chosen parameters). Finally, there are differ-
ences in the properties of the underlying slow oscil-
lations. The real neuron had a more linear rise of
voltage during the recovery phase of the bursting cycle
than does the model neuron for the parameter values
illustrated here. It also did not exhibit the ‘overshoot’
after the last action potential of the burst that the
model cell predicted. We expect that these differences
may be alleviated by further changes in other para-
meters than the ones that have been the focus of this
investigation.

We make a number of more technical comments
about the structure of bifurcations and the presence of
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chaotic behavior in the system, for the benefit of
mathematically inclined readers. As one crosses the
Hopf bifurcation curve vertically upward in the
bursting region near the point (0.309361,114) marked
with a large cross in figure 6, unstable periodic orbits
emerge at the Hopf bifurcation. There is a region of
bistability above the Hopf bifurcation curve (i.e.
larger g4) for which different initial conditions tend to
either a stable equilibrium or to a bursting oscillation.
These bursting oscillation solutions appear to merge
with the family of periodic orbits that bifurcated from
the equilibrium at the Hopf bifurcation. In the course
of this process, either the stable bursting oscillations
become slow oscillations without bursts, or the un-
stable oscillations develop bursts.

As one moves from the bursting region across the
saddle-node curve into the region with multiple
equilibria by decreasing gkca (to the left of the region
labeled as having 11 action potentials per burst in
figure 6), there is a complex transition from bursting
solutions (figures 4a and 5a) to periodic action
potentials (figures 46 and 5b). Approaching this
transition from the left (increasing gkca.), the periodic
action potentials appear to go through a transition to
aperiodic, but rapid action potentials, that follows the
classical ‘period-doubling’ route to chaos. There is a
small region of the parameter space in which the
range of wvariation of the calcium concentration
changes chaotically in sequences of action potentials
(figures 4¢ and 5¢). At the boundary of this region, the
small variations of the chaotically varying calcium
concentration reach a threshold at which the calcium
concentration falls to a low value and the membrane
potential becomes hyperpolarized for a time that is
long compared to the time scale of the action poten-
tials. The calcium concentration eventually begins to
increase and the membrane depolarizes, leading to a
burst of action potentials during which the calcium
concentration further increases. Chaotic action poten-
tials are interspersed with intermittent bursts in this
régime.

The Hopf bifurcation curve passes through a point
of double Hopf bifurcation along its lower branch.
One can interpret the two modes as representing the
slow oscillations and the action potentials and view
the small loop in the curve of Hopf bifurcations as the
parameter regime in which the time scales for these
oscillations become comparable. At the point of
double Hopf bifurcation, the ratio between the periods
of the two oscillations is approximately six (as deter-
mined from the eigenvalues computed by the program
DsTool at the point of double Hopf bifurcation),
which is not as large as the typical ratio between the
time scales of action potentials and slow oscillations.
The period of a typical action potential is approxima-
tely 30 ms while the slow oscillations have a period of
approximately 1s. Near a point of double Hopf
bifurcation, one expects the possibility of nonlinear
interactions of two modes that can be described by a
reduction to ‘normal form’ for the system (Gucken-
heimer & Holmes 1983). The effect of these nonlinear
interactions depends upon coefficients in the normal
form equation that we did not try to compute.
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Additionally, the angle between the two curves of
Hopf bifurcation is small in the model, making it
difficult to see these interactions easily.

The final property of the bifurcation diagram of
figure 6 that we comment upon is the presence of a
curve of ‘homoclinic bifurcation’ associated with chao-
tic trajectories in the region that is labeled ‘irregular’.
Silnikov and later Tresser (Guckenheimer & Holmes
1983) analyzed the properties of dynamical systems in
which there was a trajectory asymptotic to an equilib-
rium point in both forwards time and backwards time.
Generically, the approach to the equilibrium occurs in
the directions for which the linearization has the
slowest rate of approach (in both forward and back-
wards time). There are several different cases dis-
tinguished by whether the trajectories approach the
equilibrium in an oscillatory fashion or from a well
defined direction, and by the ratio of the rates of
approach. In the system studied here, the homoclinic
orbit that we identify leaves an equilibrium in an
oscillatory manner with a slower rate than it
approaches it. One expects to find chaotic trajectories
in the vicinity of the homoclinic orbit. We do indeed
find a rather large chaotic area within the bursting
region of the parameter space near this homoclinic
bifurcation.

DISCUSSION

The main conclusion of our study is that bifurcation
analysis can be used to map the behavior of realistic,
channel-based models for the response of a condi-
tionally bursting neuron to changes in its environ-
ment. We compared the activity of the AB cell in the
stomatogastric ganglion of the spiny lobster Panulirus
wnterruptus to that of a six dimensional vector field
representing six currents in the membrane of this cell.
Through computer analysis and simulation, we have
produced maps that illustrate the response of the
model to variations in the conductances of the potas-
sium channels of this cell. These maps give us new
insight in our studies of how the cell responds to
changes in its environment. We are particularly
interested in the response of the AB neuron to
neuromodulators such as the monoamines dopamine,
serotonin and octopamine (Harris-Warrick & R. E.
Flamm 1987). In other stomatogastric neurons, these
amines appear to modulate the conductances of
several potassium currents (Kiehn and R. M. Harris-
Warrick 1992; Harris-Warrick et al. 1992). Compari-
son of AB responses to amines and potassium channel
antagonists will be greatly facilitated by quantitative
reference to maps of the AB cell parameter space
(figures 3 and 6).

The repertoire of dynamical behavior displayed by
the model neurons is rich and includes chaotic
phenomena. Since many of the details of the bifurca-
tions observed in the models require careful analysis of
numerically integrated trajectories, matching experi-
mental data with model behavior is still a difficult
task. There are many parameters in the model we
have explored, and direct measurement of some of
these in the AB cell is not yet experimentally feasible.
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Therefore, determination of parameters that fit well
with indirect observations of overall neural activity is
an exhaustive task, much of which has not yet been
automated. It is more feasible to match a series of
neuronal responses to sequential modification of a
single variable, as we have done using 4-AP to reduce
ga. This imposes significant constraints on the choice
of parameters, hopefully to make them similar to the
values in the real cell. For example, in a parameter
range 0.15 < gkca < 0.6, there are no fewer than ten
different sequences of changes in the qualitative
rhythmic patterns produced by the model during
reductions of go. The ranges of parameter values for
the conductance ggc, that do match the data are
relatively narrow. The two dimensional parameter
space map illustrated in figure 6 provides an essential
tool for making a successful match between the model
and the experimental data. Our confidence that this
match is meaningful is strengthened by the fact that
the model captures important features in the variabi-
lity of the data between neurons with only small
changes in the model conductance of gkc,. Previous
studies of neural models have demonstrated the
important roles of the A current and the calcium
activated potassium current in shaping oscillatory
properties of a cell (Connor & Stevens 1971; Gorman
& Thomas 1978), but we show how the delicate
balance in the relative magnitude of these two con-
ductances influences the complex patterns of rhythmic
behavior displayed by a model neuron.

We do not argue that this model has enough
structure to represent all observed behavior of the AB
neuron. There are noticeable differences in the model
and the data in the magnitude of the action potentials.
As described above, this is due to the attenuation of
the action potentials between their initiation in the
neuropil of the AB neuron and the site of recording in
the soma. We do not know the extent to which the
single compartment model that we are using can be a
good representation for the qualitative properties of
this neuron, which clearly has important spatial
segregation of currents. Moreover, the model does not
contain an exhaustive list of all possible ion channels
in the AB cell. For example, we have preliminary
evidence for a slow hyperpolarization-activated
inward current, [, in several STG neurons (Golow-
asch 1991; Kiehn & Harris-Warrick 1992; Harris-
Warrick et al. 1992). Other oscillatory neurons appear
to contain ion channels with very slow activation and
inactivation kinetics. These currents are not present in
our model, and they may become important to model
certain aspects of the oscillatory behavior of the AB
cell. Changes in the form of the model may thus be
needed to capture all of the AB neuron’s responses to
changes in its environment, but this can only be
determined through exhaustive study of the properties
of the model and further comparison with experi-
mental data. What has been demonstrated is that the
currents contained in this model are sufficient to
explain the complicated sequential modulation of
rhythmic patterns that are produced by increasing
blockade of the potassium A current by 4-AP. Syste-
matic mapping of the parameter space associated with
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the conductances of the potassium channels that are
incorporated in the model has enabled us to under-
stand the range of rhythmic behavior displayed by the
model in a substantial region of its parameter space.

There is a final philosophical point that deserves
discussion concerning the parameter values that we
have chosen for our model. When initiating our
studies, we deliberately sought parameter values at
which degenerate bifurcations occur. While it appears
fortuitous that these parameter values have yielded a
good match with experimental observations, there
may be evolutionary advantages for a nerve cell to
operate in such a region of the parameter space. One
of the functions of the nervous system is to be
maximally sensitive to its environment and to radi-
cally modify its behavior in response to small changes
within that environment. Bifurcations locate points of
the parameter space at which a small change in
parameter values results in qualitative changes in the
system behavior. Near degenerate bifurcations, this
sensitivity to small parameter changes is even greater,
and there are often more regions of different types of
qualitative behavior that are accessible nearby. Using
a term introduced by Thom (1975), the nerve cell can
function as a maximally sensitive signal detector if it
operates at a point of the parameter space that is an
‘organizing center’. The computation of such points in
models is an effective procedure for locating regions in
which the models are sensitive to small changes in the
model parameters. We speculate that many neurons
and/or neural networks have evolved to operate in
such regions.
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